Ladder Loss for Coherent Visual-Semantic Embedding
نویسندگان
چکیده
منابع مشابه
Multi-Instance Visual-Semantic Embedding
Visual-semantic embedding models have been recently proposed and shown to be effective for image classification and zero-shot learning, by mapping images into a continuous semantic label space. Although several approaches have been proposed for single-label embedding tasks, handling images with multiple labels (which is a more general setting) still remains an open problem, mainly due to the co...
متن کاملEfficient Hierarchical Embedding for Learning Coherent Visual Styles
The visionary Steve Jobs said, “A lot of times, people don’t know what they want until you show it to them.” A powerful recommender system not only shows people similar items, but also helps them discover what they might like, and items that complement what they already purchased. In this paper, we attempt to instill a sense of “intention” and “style” into our recommender system, i.e., we aim t...
متن کاملDeViSE: A Deep Visual-Semantic Embedding Model
Modern visual recognition systems are often limited in their ability to scale to large numbers of object categories. This limitation is in part due to the increasing difficulty of acquiring sufficient training data in the form of labeled images as the number of object categories grows. One remedy is to leverage data from other sources – such as text data – both to train visual models and to con...
متن کاملAnalogy-preserving Semantic Embedding for Visual Object Categorization
In multi-class categorization tasks, knowledge about the classes’ semantic relationships can provide valuable information beyond the class labels themselves. However, existing techniques focus on preserving the semantic distances between classes (e.g., according to a given object taxonomy for visual recognition), limiting the influence to pairwise structures. We propose to model analogies that ...
متن کاملVisual Classifier Prediction by Distributional Semantic Embedding of Text Descriptions
One of the main challenges for scaling up object recognition systems is the lack of annotated images for real-world categories. It is estimated that humans can recognize and discriminate among about 30,000 categories (Biederman and others, 1987). Typically there are few images available for training classifiers form most of these categories. This is reflected in the number of images per categor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i07.7006